

Invenio-Celery

[image: _images/invenio-celery.svg]
 [https://github.com/inveniosoftware/invenio-celery/blob/master/LICENSE][image: _images/invenio-celery1.svg]
 [https://travis-ci.org/inveniosoftware/invenio-celery][image: _images/invenio-celery2.svg]
 [https://coveralls.io/r/inveniosoftware/invenio-celery][image: _images/invenio-celery3.svg]
 [https://pypi.org/pypi/invenio-celery]Celery distributed task queue module for Invenio.

Invenio-Celery is a small discovery layer that takes care of discovering and
loading tasks from other Invenio modules, as well as providing configuration
defaults for Celery usage in Invenio. Invenio-Celery relies on Flask-CeleryExt
for integrating Flask and Celery with application factories.

Further documentation is available on https://invenio-celery.readthedocs.io/

User’s Guide

This part of the documentation will show you how to get started in using
Invenio-Celery.

	Installation

	Configuration

	Usage
	Defining tasks

	Using tasks

	Periodic tasks

	Celery workers

API Reference

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Docs

Additional Notes

Notes on how to contribute, legal information and changes are here for the
interested.

	Contributing

	Changes

	License

	Contributors

Installation

Invenio-Celery is on PyPI so all you need is:

$ pip install invenio-celery

Configuration

Default configuration values for Celery integration.

For further Celery configuration variables see
Celery [http://docs.celeryproject.org/en/3.1/configuration.html]
documentation.

	
invenio_celery.config.CELERY_ACCEPT_CONTENT = ['json', 'msgpack', 'yaml']

	A whitelist of content-types/serializers.

	
invenio_celery.config.CELERY_BROKER_URL = 'redis://localhost:6379/0'

	Broker settings.

	
invenio_celery.config.CELERY_RESULT_BACKEND = 'redis://localhost:6379/1'

	The backend used to store task results.

	
invenio_celery.config.CELERY_RESULT_SERIALIZER = 'msgpack'

	Result serialization format. Default is msgpack.

	
invenio_celery.config.CELERY_TASK_SERIALIZER = 'msgpack'

	The default serialization method to use. Default is msgpack.

Usage

Celery distributed task queue module for Invenio.

Invenio-Celery is a small discovery layer that takes care of discovering and
loading tasks from other Invenio modules, as well as providing configuration
defaults for Celery usage in Invenio. Invenio-Celery relies on Flask-CeleryExt
for integrating Flask and Celery with application factories.

Defining tasks

Invenio modules that wish to define Celery tasks should use the
@shared_task decorator (usually in tasks.py):

mymodule/tasks.py
from celery import shared_task

@shared_task
def sum(x, y):
 return x + y

Additionally the Invenio module should add the task module into the
invenio_celery.tasks entry point:

setup.py
setup(
 # ...
 entry_points=[
 'invenio_celery.tasks' : [
 'mymodule = mymodule.tasks'
]
]
)

Using tasks

Invenio modules that need to call tasks do not need to do anything special as
long as the Invenio-Celery extension has been initialized. Hence calling tasks
is as simple as:

from mymoudle.tasks import sum
result = sum.delay(2, 2)

Periodic tasks

Periodic tasks can be configured via CELERYBEAT_SCHEDULE configuration
variable:

config.py
CELERYBEAT_SCHEDULE = {
 'indexer': {
 'task': 'invenio_indexer.tasks.process_bulk_queue',
 'schedule': timedelta(minutes=5),
 },
}

For further information about see Periodic Tasks [http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html]
chapter of the Celery documentation [http://docs.celeryproject.org/en/latest/index.html].

Celery workers

Invenio-Celery hooks into the Celery application loading process so that when
a worker starts, all the tasks modules defined in invenio_celery.tasks will
be imported and cause the tasks to be registered in the worker. Note that this
only happens on the Celery worker side which needs to know upfront all the
possible tasks.

For further details on how to setup Celery and define an Celery application
factory please see Flask-CeleryExt [https://flask-celeryext.readthedocs.io/]

API Docs

Celery application for Invenio.

	
class invenio_celery.ext.InvenioCelery(app=None, **kwargs)

	Invenio celery extension.

Extension initialization.

	
disable_queue(name)

	Disable given Celery queue.

	
enable_queue(name)

	Enable given Celery queue.

	
get_active_tasks()

	Return a list of UUIDs of active tasks.

	
get_queues()

	Return a list of current active Celery queues.

	
init_app(app, entry_point_group='invenio_celery.tasks', **kwargs)

	Initialize application object.

	
init_config(app)

	Initialize configuration.

	
load_entry_points()

	Load tasks from entry points.

	
suspend_queues(active_queues, sleep_time=10.0)

	Suspend Celery queues and wait for running tasks to complete.

	
invenio_celery.ext.celery_module_imports(sender, signal=None, **kwargs)

	Load shared celery tasks.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-celery/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Invenio-Celery could always use more documentation, whether as part of the
official Invenio-Celery docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/inveniosoftware/invenio-celery/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up invenio-celery for local development.

	Fork the inveniosoftware/invenio-celery repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/invenio-celery.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv invenio-celery
$ cd invenio-celery/
$ pip install -e .[all]

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8
(code style), PEP257 (documentation), flake8 as well as build the Sphinx
documentation and run doctests.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s
 -m "component: title without verbs"
 -m "* NEW Adds your new feature."
 -m "* FIX Fixes an existing issue."
 -m "* BETTER Improves and existing feature."
 -m "* Changes something that should not be visible in release notes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests and must not decrease test coverage.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring.

	The pull request should work for Python 2.7, 3.3, 3.4 and 3.5. Check
https://travis-ci.org/inveniosoftware/invenio-celery/pull_requests
and make sure that the tests pass for all supported Python versions.

Changes

Version 1.0.1 (released 2018-12-06)

	Adds support for Celery v4.2. Technically this change is backward
incompatible because it is no longer possible to load tasks from bare modules
(e.g. mymodule.py in the Python root). This is a constraint imposed by Celery
v4.2. We however do not known of any cases where bare modules have been used,
and also this design is discouraged so we are not flagging it as a backward
incompatible change, in order to have the change readily available for
current Invenio version.

Version 1.0.0 (released 2018-03-23)

	Initial public release.

License

MIT License

Copyright (C) 2015-2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note

In applying this license, CERN does not waive the privileges and immunities
granted to it by virtue of its status as an Intergovernmental Organization or
submit itself to any jurisdiction.

Contributors

	Bruno Cuc

	Esteban J. G. Gabancho

	Javier Delgado

	Jiri Kuncar

	Krzysztof Nowak

	Lars Holm Nielsen

	Paulina Lach

	Sami Hiltunen

	Sebastian Witowski

	Tibor Simko

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 invenio_celery	

 	
 	
 invenio_celery.config	

 	
 	
 invenio_celery.ext	

Index

 C
 | D
 | E
 | G
 | I
 | L
 | S

C

 	
 	CELERY_ACCEPT_CONTENT (in module invenio_celery.config)

 	CELERY_BROKER_URL (in module invenio_celery.config)

 	celery_module_imports() (in module invenio_celery.ext)

 	
 	CELERY_RESULT_BACKEND (in module invenio_celery.config)

 	CELERY_RESULT_SERIALIZER (in module invenio_celery.config)

 	CELERY_TASK_SERIALIZER (in module invenio_celery.config)

D

 	
 	disable_queue() (invenio_celery.ext.InvenioCelery method)

E

 	
 	enable_queue() (invenio_celery.ext.InvenioCelery method)

G

 	
 	get_active_tasks() (invenio_celery.ext.InvenioCelery method)

 	
 	get_queues() (invenio_celery.ext.InvenioCelery method)

I

 	
 	init_app() (invenio_celery.ext.InvenioCelery method)

 	init_config() (invenio_celery.ext.InvenioCelery method)

 	invenio_celery (module)

 	
 	invenio_celery.config (module)

 	invenio_celery.ext (module)

 	InvenioCelery (class in invenio_celery.ext)

L

 	
 	load_entry_points() (invenio_celery.ext.InvenioCelery method)

S

 	
 	suspend_queues() (invenio_celery.ext.InvenioCelery method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Invenio-Celery

 		
 Installation

 		
 Configuration

 		
 Usage

 		
 Defining tasks

 		
 Using tasks

 		
 Periodic tasks

 		
 Celery workers

 		
 API Docs

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Changes

 		
 License

 		
 Contributors

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

